E. Feng (ANL): Higgs Total Width

- Measure Higgs total width using combined fit to all production modes and decay channels
- Lower limit on Higgs total width from sum of observed partial widths
 - Dominated by H->bb since expected BR(H->bb) ~ 57%
- Upper limit from capping the coupling strength to weak bosons: κ_v <1.5
 - Physically motivated assumption that high-mass VV scattering does not diverge
 - Stricter assumption κ_{V} <1 would produce proportionally stronger limit on width
- For 7-8 TeV sensitivity, consider simple model with one coupling strength to weak vector bosons ($\kappa_V = \kappa_{W=} \kappa_7$) and another to fermions ($\kappa_F = \kappa_h = \kappa_t = ...$)
- For 14 TeV, consider more realistic model with separate b-quark coupling strength, κ_{b}
 - Scale sensitivity for total width according to precision on κ_{b} and κ_{V}
- Higgs total width can be determined to roughly 8-17% (4-12%) with 300 (3000) fb⁻¹ at 14 TeV, depending how systematic uncertainties scale

Accelerator	Luminosity	$\Delta(\kappa_{\rm v})/\kappa_{\rm v}$	$\Delta(\kappa_{\rm F})/\kappa_{\rm F}$	$\Delta(\kappa_b)/\kappa_b$	$\Delta(\Gamma_{ m H})/\Gamma_{ m H}$
LHC pp @ 7-8 TeV	25 fb ⁻¹	7%	17%		20%
LHC pp @ 14 TeV	300 fb ⁻¹	3-5%		7-15%	8-17%
u n	3000 fb ⁻¹	1-4%		3-11%	4-12%